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Fig. 10. Functional diagram of the phase-locked VCO.
Fig. 11. Output spectrum of an FET oscillator, phase locked to a crystal

oscillator. Res. BW =1 KHz. Hor. Div =10 KHz. Vert. Div =10 dB.

ity, it was decided to phase lock one of the oscillators, S. no. 4 in
Table I, to a crystal-controlled signal. The oscillator power sam-
ple was taken with a coaxial probe mounted on the cover of the
VCO housing. A harmonic mixer [3] driven by a stable 2-GHz
LO was used to obtain an IF frequency of 100 MHz, the FET
oscillator frequency being 35.9 GHz. This IF was locked to a
crystal oscillator with the help of a phase-locked loop, as shown
in Fig. 10, The resulting spectrum as observed on a spectrum
analyzer is shown in Fig. 11.

VL

Ka-band oscillators employing widely available GaAs FET’s
have been demonstrated. These offer advantages of lower power
consumption and potentially lower cost in comparison with Gunn
oscillators.

CONCLUSION
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Integral Transforms Useful for the Accelerated
Summation of Periodic, Free-Space Green’s
Functions

R. LAMPE, P. KLOCK, SENIOR MEMBER, IEEE,
AND P. MAYES, FELLOW, IEEE

Abstract —The Poisson summation formulas for two- and three-dimen-
sional, periodic, free-space Green’s functions of the Helmholtz and Laplace
equations are cataloged in this paper. It is shown how these formulas can
be applied for the efficient, approximate summation of series which arise in
the computation of fields due to an infinite array of charge or current
sources. The technique for approximating the summation of the series is
valid for all arguments of a Green’s function, even those which correspond
to the region near a source singularity. \

I. INTRODUCTION

The computation of fields due to periodic sources can arise in
the application of image theory when multiple ground planes are
present. When the ground planes are closely spaced, the contribu-
tion to the field due to direct summation of the image sources is
impractical due to very slow convergence. Hence, the image
technique has been of limited usefulness in solving problems such
as those involving striplines or cavities.

The Poisson summation formula [1] can sometimes be use to
convert a slowly converging series into a rapidly converging one
by allowing the series to be summed in the Fourier transform
domain. To date, the Poisson summation formula has, when
applied to periodic sources, been primarily applied to cases of
determining fields at a distance from a source region. If the terms
of a spatial domain series represent sampling of a function which
is singular or nearly singular, such as the field near a source, the
summation in the transform domain could be as slowly conver-
gent as that in the spatial domain. Typically, the determination of
a charge or current distribution for an element in a periodic array
involves the evaluation of the field near a source singularity
precluding useful application of the Poisson summation formula.

II. SERIES ACCELERATION TECHNIQUE

A technique has been described for accelerating the summation
of periodic, free-space Green’s functions which circumvents the
difficulty of slow convergence near a source singularity [2]. In its
most basic form, this technique begins with two periodic func-
tions: one for which a sum is required, and another which is
asymptoticaily equal to the first but is smooth everywhere. These
two functions will be defined as

o0 o0
Y f(n)and 3 g(n)
n=—00 n=—oc
respectively. The equation which represents this technique is
derived by combining Kummer’s transformation {3] and the
Poisson summation formula to obtain the following approxima-
tion:
=]

S f)= T m-gm]+ Y G@m) 1)

n=-o0 n=-—K n=-—o0c0
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TABLEI

FREE-SPACE GREEN’S FUNCTIONS

AND THEIR SUMMATION FORMULAS

hod 1 —12 1,2
1) E f(n)= Z E[(x—x’)2+(y—y')2+(z—nd)2] ~exp(—jk[(x—x’)2+(y—y’)2+(z—nd)z] )
o (1 2an\? vz 12 -j2
=n=z_:w(2—wd)K0([(%) —kz] [(x—x’)2+(y—y')2] exP( jdwnz)
[ o 1
) X = X R (k- (r-may] )
R 1 2 2 -1/2 12 2 2 1/2 -2
=n=z_wﬁ[(%) _kl] exp(_[(x_x,)Z] (_Z”l) — k2 )exp( ]dﬂ'ny)
5] 00 1 -12
N L m= L |G-y - nay]
o 1 12|12 - j2
= Lzl [ o T R
ot o -1 - 1|27 2 -2
4) E f(n)="Y, ﬁln([(x—x’)2+(y—nd)2]1/2)= E 27 —Z’z exp(—[(x—x’)z]l/z%)exp(%)
d - 1 < 1{f2an\? = — j2anx\ 1 d kd
5) ”=Z_wf(n)=n=z_mﬁexp(—klx—ndl)=n=z_w2[(~d—) +k2] exp(——d )=2—kcosh[(§—x)(k)]/sinh(7)
2 21 " > 12 Ny -1 d (kd
O L0 % mrestisom)= £ () 0] on <57) - Sl (4- <)o) n( )
where functions g(n) and G(27n) are determined from f(n) and its
) Poisson summation formula by a simple substitution. For apply-
Y. G(2mn) ing the acceleration technique, a complete list of periodic, free-
n=—0o0

is the Poisson summation formula for the series

o0
X g(n).
n=—0c0
Since the series
o0

X g(n)

n=—o0

represents a smooth function sampled periodically, its summation
in the transform domain is greatly accelerated. Thus, this tech-
nique sums the contribution of the terms in a region near a
singularity in the spatial domain and then sums the contribution
of the slowly converging asymptotic terms in the transform
domain for great savings in computation time.

This series acceleration technique has application in problems
in electromagnetics which involve a periodic, free-space Green’s
function, such as in problems to which the method of images is
applied, or those which deal with large arrays of antenna ele-
ments. In these problems, the Green’s function of an integral
equation can be identified as the function f(n) in (1), and the

space Green’s functions of the Helmholtz and Laplace equations
along with their Poisson summation formulas is compiled in
Table I. These formulas permit efficient, approximate evaluation
of the contribution to the field due to single or multiple summa-
tions of charge or current sources in rectangular coordinates.
These formulas have in some cases been collected [4],[5] and in
others derived by the authors. The notation used in Table I is as
follows:

K,y(x) modified Bessel function of zeroth order,

H{®(x) Hankel function of the second kind, zeroth order,
exp(x)  exponential function,

In(x) natural logarithm,

k propagation constant of the medium,

J square root of minus one.

A detailed description of how to recover g(n) and GQ2wn)
from f(n) for use in the acceleration formula (1) follows. First,
locate the appropriate Green’s function f(n) in Table L If f(n)
involves formulas 1)~4) of Table I, then g(n) and G(27n) are
derived by substituting (x ~ x')> + ¢? for (x ~ x’)? in the equa-
tion for f(n) and its Poisson summation formula, respectively. In
this substitution, ¢ is a real constant chosen to minimize error
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and maximize computational efficiency. Formulas 5) and 6) of
Table I represent one-dimensional Green’s functions and their
Poisson summation formulas. Since these one-dimensional
Green’s functions do not have source singularities, they can be
readily summed by direct application of the Poisson summation
formula; that is, the acceleration technique defined by (1) is not
required. The Poisson summation formulas for these one-dimen-
sional Green’s functions are normally only needed in certain
cases involving multiple summations.

Whereas the formulas in Table I are directly applicable to
one-dimensional arrays of point and line sources, they can be
easily extended, by successive application, to arrays of higher
dimensions involving multiple summations. This extension is a
result of the property that the Fourier transform of any of these
Green’s functions of any one dimension can be interpreted as the
Green’s function at the next lower dimension. For instance, the
result of applying the Poisson summation formula one time to a
two-dimensional array of point sources can be interpreted as a
two-dimensional Green’s function. The Poisson summation for-
mula can then be applied again to recover the final Poisson
summation formula for a two-dimensional array. This procedure
is demonstrated by the following example.

To obtain a summation formula for a two-dimensional array of
point current sources, the Poisson summation formula is first
applied to the y coordinate of the three-dimensional Green’s
function yielding

f(p.a)= i i [x2+(y—pa)*+(z—qp)’]

p=—0wg=—m

cexp( - k[ +(y = pa)’ +(z - av)’]”")

0 o 1 2up 2 , 1/2
- =2_me0([(7) ~k

.[x2+(z—qb)2]1/2)exp(:@). 2

An expression equivalent to a two-dimensional Green’s function
can be recovered by manipulation of the above expression giving

= i f_: ai H(Z)([k (2$)2]1/2

[ +(z—qb)2]1/2) exp(————_ ji'rrpy).

Applying the Poisson summation formula again, but this time to
the z coordinate of (3), gives the following Poisson summation
formula for the Green’s function f( p, ¢):

BBl ey

p=—owg=—ow

ol (25 -2 ]
.exp( - jiwpy)exp( - jiqu)' (4)

The asymptotic form of the Green’s function g(p,q) and its
Poisson summation formula G(27n,27q), required by the accel-
eration formula (1), are obtained from the Green’s function and
(4) by substituting (x2 + ¢?) for x2.

(3)
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One final comment needs to be made. At first inspection, the
singularity at n=0 in the Poisson summation formulas of the
two- and three-dimensional Green’s functions of the Laplace
equation, ie., formulas 3) and 4) in Table I, seem to cause
trouble. In practice, the series Green’s function can always be
written as the difference of two functions, both of which having
the functional form of f(n) in either formula 3) or 4) of Table 1.
With the Green’s function written in this form, the n = 0 term of
the Poisson summation formula equals zero, removing the singu-
larity and obviating the problem.

111

The application of the series acceleration technique defined by
(1) permits efficient computation of wide classes of problems
which involve periodic sources. Many of these problems require
integral transforms in the form of Poisson summation formulas
which are not readily available. This paper presents a complete,
«convenient catalog of these Poisson summation formulas for
Green’s functions of the Helmholtz and Laplace equations which
represent periodic sources in rectangular coordinates and homo-
geneous media.

CONCLUSION
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Constant-Frequency Synthesis of Lossy Microwave
Two-Ports

LODEWIIK R. G. VERSFELD

Abstract — At a fixed frequency, every linear time-invariant two-port can
be described by its scattering matrix, whose elements represent eight real
parameters. In this paper, it is proved that every lossy (linear, time-
invariant) two-port can be canonically synthesized by eight “elementary”
two-ports, which are characterized by one parameter only. Moreover, these
elementary two-ports are passive and realizable in the microwave region.
The synthesis is performed in the form of a cascade structure (with one
“side arm” for the nonreciprocal case). Explicit formulas for the parame-
ters of the elementary two-ports are derived.

1. INTRODUCTION

This paper gives a “satisfactory” synthesis of linear, time-
invariant, lossy microwave two-ports at a fixed frequency. It
herewith solves part of the general problem of constant-frequency
synthesis of microwave networks [1]. By “satisfactory” we mean a
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