
734 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-33, NO. 8, AUGUST 1985

FET VCO

r----e’’”””’

4-?HARMONIC 2 GHz REFERENCE
MIXER

LOOP AMPLIFIER
j~OMH.

AND FILTER

LIMITING
AMPLIFIER

DETECTOR

Fig. 10.

PHASEIFREQ

c125MHz
CRYSTAL OSC

Functional diagram of the phase-locked VCO.

Fig. 11. Output spectrum of an FET oscillator, phae locked to a crystal

oscillator. Res. BW = 1 KHz. Her. Div =10 KHz. Vert. Div =10 dB.

ity, it was decided to phase lock one of the oscillators, S. no. 4 in

Table I, to a crystal-controlled signal. The oscillator power sam-

ple was taken with a coaxial probe mounted on the cover of the

VCO housing. A harmonic mixer [3] driven by a stable 2-GHz

LO was used to obtain an IF frequency of 100 MHz, the FET

oscillator frequency being 35.9 GHz. This IF was locked to a

crystal oscillator with the help of a phase-locked loop, as shown

in Fig. 10. The resulting spectrum as observed on a spectrum

analyzer is shown in Fig. 11.

VI. CONCLUSION

Ku-band oscillators employing widely available GaAs FET’s

have been demonstrated. These offer advantages of lower power

consumption and potentially lower cost in comparison with Gunn

oscillators.
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Integral Transforms Useful for the Accelerated

Summation of Periodic, Free-Space Green’s
Functions

R. LAMPE, P. KLOCK, SEN1ORMEMRER, IEEE,

AND P. MAYES, FELLOW, IEEE

Abstract —The Poisson summation formulas for two- and three-dimen-

siorsaf, periexhc, free-space Green’s functions of the Hehnholtz and Laplace

equations are cataloged in this paper. It is shown how these formofas can

he applied for the efficient, approximate summation of series which arise in

the computation of fields due to an infinite array of charge or current

sources. The techrdque for approximating the summation of the series is

valid for afl arguments of a Green’s function, even those which correspond

to the region near a source singularity.

I. INTRODUCTION

The computation of fields due to periodic sources can arise in

the application of image theory when multiple ground planes are

present. When the ground planes are closely spaced, the contrib-

ution to the field due to direct summation of the image sources is

impractical due to very slow convergence. Hence, the image

technique has been of limited usefulness in solving problems such

as those involving stnplines or cavities.

The Poisson summation formula [1] can sometimes be use to

convert a slowly converging series into a rapidly converging one

by allowing the series to be summed in the Fourier transform

domain. To date, the Poisson summation formula has, when

applied to periodic sources, been primarily applied to cases of

determining fields at a distance from a source region. If the terms

of a spatial domain series represent sampling of a function which

is singular or nearly singular, such as the field near a source, the

summation in the transform domain could be as slowly conver-

gent as that in the spatial domain. Typically, the determination of

a charge or current distribution for an element in a periodic array

involves the evaluation of the field near a source singularity

precluding useful application of the Poisson summation formula.

II. SERIES ACCELERATION TECHNJQUE

A technique has been described for accelerating the summation

of periodic, free-space Green’s functions which circumvents the

difficulty of slow convergence near a source singularity [2]. In its

most basic form, this technique begins with two periodic func-

tions: one for which a sum is required, and another which is

asymptotically equal to the first but is smooth everywhere. These

two functions will be defined as

cc m

respectively. The equation which represents this technique is

derived by combining Kummer’s transformation [3] and the

Poisson summation formula to obtain the following approxima-

tion:

i’ f(rs) = f [.f(~)-drr)]+ E G(27vI) (1)
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TABLE I
FREE-SPACE GREEN’S FUNCTIONS AND TEIHR SUMMATION FORMULAS

:=

1)

2)

3)

4)

5)

6)
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where

~ G(27vs)
~=—w

is the Poisson summation formula for the series

m

E g(n).
~=—~

Since the series

~ g(n)
~=. w

represents a smooth function sampled periodically, its summation

in the transform domain is greatly accelerated. Thus, this tech-

nique sums the contribution of the terms in a region near a

singularity in the spatial domain and then sums the contribution

of the slowly converging asymptotic terms in the transform

domain for great savings in computation time.

This series acceleration technique has application in problems

in electromagnetic which involve a periodic, free-space Green’s

function, such as in problems to which the method of images is

applied, or those which deal with large arrays of antenna ele-

ments. In these problems, the Green’s function of an integral

equation can be identified as the function ~(n) in (l), and the

functions g(n) imd G(2 rn) are determined from j(n) and its

Poisson summation formula by a simple substitution. For apply

ing the acceleration technique, a complete list of periodic, free-

space Green’s functions of the Helmholtz and Laplace equations

along with their Poisson summation formulas is compiled in

Table I. These fcu-mulas permit efficient, approximate evaluation

of the contribution to the field due to single or multiple summa-

tions of charge or current sources in rectangular coordinates.

These formulas have in some cases been collected [4], [5] and in

others derived by the authors. The notation used jn Table I is as

follows:

Ko(x) modified Bessel function of zeroth order,

H~2j (X) Hankel function of the second kind, zeroth order,

exp(x) exponential function,

in(x) natural logarithm,

k propagation constant of the medium,

J square root of minus one.

A detailed description of how to recover g(n) and G(27n)

from j(n) for use in the acceleration formula (1) follows. First,

locate the appropriate Green’s function f(n) in Table I. If f( n)

involves formulas 1)–4) of Table I, then g(n) and G (2 nn ) are

derived by substituting (x – x’) 2 + C2 for (x – x’)’ in the equa-

tion for ~(n) and its Poisson summation formula, respectively. In

this substitution, c is a real constant chosen to minimize error
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and maximize computational efficiency. Formulas 5) and 6) of

Table I represent one-dimensional Green’s functions and their

Poisson summation formulas. Since these one-dimensional

Green’s functions do not have source singularities, they can be

readily summed by direct application of the Poisson summation

formula; that is, the acceleration technique defined by (1) is not

required. The Poisson summation formulas for these one-dimen-

sional Green’s functions are normally only needed in certain

cases involving multiple summations.

Whereas the formulas in Table I are directly applicable to

one-dimensional arrays of point and line sources, they can be

easily extended, by successive application, to arrays of higher

dimensions involving multiple summations. This extension is a

result of the property that the Fourier transform of any of these

Green’s functions of any one dimension can be interpreted as the

Green’s function at the next lower dimension. For instance, the

result of applying the Poisson summation formula one time to a

two-dimensional array of point sources can be interpreted as a

two-dimensional Green’s function. The Poisson summation for-

mula can then be applied again to recover the final Poisson

summation formula for a two-dimensional array. This procedure

is demonstrated by the following example.

To obtain a summation formula for a two-dimensional array of

point current sources, the Poisson summation formula is first

applied to the y coordinate of the three-dimensional Green’s

function yielding

~(~,q)= i i? [~2+(Y-PU)2+(Z -m2]-1’2
*=_mq. .w

exp(-jk[x’+ (y-pa) ’+(z-qfr)’]’”)

.[x’+(z-qb)’y’ )exp(-~~mpy). (2)

An expression equivalent to a two-dimensional Green’s function

can be recovered by manipulation of the above expression giving

.[xz+(z-qfr)’y’ )exp(-J~’’py). (3)

Applying the Poisson summation formula again, but this time to

the z coordinate of (3), gives the following Poisson summation

formula for the Green’s function ~( p, q):

=p:mq:m~[(y)’+(~)’-+”

“exp(-’x’[(~)’+(+’)z-k’l’”)

“exp(‘~:mpy)exc:mqz)(4)

The asymptotic form of the Green’s function g( p, q) and its

Poisson summation formula G(2nn, 2 nq), required by the accel-

eration formula (l), are obtained from the Green’s function and

(4) by substituting (X2+ c’ ) for X2.

One final comment needs to be made. At first inspection, the

singularity at n = O in the Poisson summation formulas of the

two- and three-dimensional Green’s functions of the Laplace

equation, i.e., formulas 3) and 4) in Table 1, seem to cause

trouble. In practice, the series Green’s function can always be

written as the difference of two functions, both of which having

the functional form of ~( n ) in either formula 3) or 4) of Table I.

With the Green’s function written in this form, the n = O term of

the Poisson summation formula equals zero, removing the singu-

larity y and obviating the problem.

III. CONCLUSION

The application of the series acceleration technique defined by

(1) permits efficient computation of wide classes of problems

which involve periodic sources. Many of these problems require

integral transforms in the form of Poisson summation formulas

which are not readily available. This paper presents a complete,

convenient catalog of these Poisson summation formulas for

Green’s functions of the Hehnholtz and Laplace equations which

represent periodic sources in rectangular coordinates and homo-

geneous media.
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Constant-Frequency Synthesis of Lossy Microwave

Two-Ports

LODEWLIK R. G. VERSFELD

Abstract —At a freed frequency, every linear time-invariant two-port can

be described by its scattering matrix, whose elements represent eight real

parameters. In this paper, it is proved that every Iossy (linear, time-

invariant) two-port can be canonically synthesized by eight “elementary”

two-ports, which are characterized by one parameter only. Moreover, these

elementary two-ports are passive and realizable in the microwave region.

The synthesis is performed in the form of a cascade structure (with one
(Cside am~> for the nonreciprocal case). Explicit formulas for the parame-

ters of the elementary two-ports are derived.

I. INTRODUCTION

This paper gives a “satisfactory” synthesis of linear, time-

invariant, lossy microwave two-ports at a fixed frequency. It

herewith solves part of the general problem of constant-frequency

synthesis of microwave networks [1]. By” satisfactory” we mean a
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